The search for intestinal stem cells: lessons learned

Susan J. Henning PhD
Center for Gastrointestinal Biology and Disease
UNC - Chapel Hill

NASPGHAN State of the Art lecture
October 2013

Outline

• Review historical literature relating to intestinal stem cells (ISCs)
• Explain the challenges facing isolation of ISCs
• Current understanding of ISC populations
 – Homeostasis
 – Challenge e.g. after damage
• Present our new data on ISC fractions isolated by side population (SP) sorting

Growth in the ISC Field
1974 Cheng H and Leblond CP

Key Contributions from Potten Lab

First Transcript Analysis of ISCs

Table 1: Location of CBCs

<table>
<thead>
<tr>
<th>Cell position</th>
<th># of CBCs with phagosomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–3</td>
<td>20</td>
</tr>
<tr>
<td>4–6</td>
<td>30</td>
</tr>
<tr>
<td>7–9</td>
<td>9</td>
</tr>
<tr>
<td>10–12</td>
<td>1</td>
</tr>
<tr>
<td>13 and higher</td>
<td>0</td>
</tr>
</tbody>
</table>
Growth in the ISC Field

- 2004: Bmp as "brake" vs. Wnt as "driver" (He et al.)
- 2003: First marker reported: Msi-1 (Potten et al., Kayahara et al.)
- 2005: First isolation of an ISC-enriched fraction (Dekaney et al.)
- 2007: Identification of Lgr5 as a marker of CBC (Barker et al.)

Identification of Lgr5 as a Marker of ISCs

Barker et al. 2007

- Lgr5 initially identified as Wnt target gene
- ISH showed expression restricted to CBC
- Lineage tracing demonstrated:

2009 Successful ISC Culture

- Ootani et al.:
 - Minced tissue in collagen
 - Air-liquid interface
 - Myofibroblast-dependent

- Sato et al.:
 - Single Lgr5-EGFP cells
 - In Matrigel
 - Added R-spo, Jagged, Noggin, EGF
Current understanding: ISC Subtypes

- **Actively cycling**
 - Lgr5
 - Olfm4
 - Ascl2
 - Sox9

- **Slow or non-cycling**
 - DNA-LRC
 - mTert
 - Bmi1
 - Hopx
 - Lrig1
 - Dclk1
 - H2B-LRC

Which matters: Homeostasis?

- **Barker et al. 2007**
 - Lgr5 cells actively cycling
 - Lineage tracing

- **Tian et al. 2011**
 - Ablated Lgr5 cells - homeostasis unaffected
 - Lineage tracing from Bmi1 increases

Conclusion: Intestine highly adaptable

Question: Role of other +4 ISC?

Which matters: Repair after Damage?

Role of CBC-ISC

- **Hua et al. 2012**
 - Lgr5 cells reduced but number surviving predicts crypt recovery

- **Van Landeghem et al. 2012**
 - Sox9^{low} cells
 - Normally 24% Edu⁺
 - After irradiation 63% Edu⁺
Which matters: Repair after Damage?

<table>
<thead>
<tr>
<th>Role of +4-ISC</th>
<th>DNA-LRCs: Potten et al. 1978</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control = none</td>
</tr>
<tr>
<td></td>
<td>Radiation LRC = 10% +4 cells</td>
</tr>
</tbody>
</table>

DCAMKL: Dclk1: May et al. 2007

<table>
<thead>
<tr>
<th>DCAMKL: Dclk1: May et al. 2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferation induced by radiation</td>
</tr>
</tbody>
</table>

mTert: Montgomery et al. 2011

<table>
<thead>
<tr>
<th>mTert: Montgomery et al. 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lineage tracing increases markedly</td>
</tr>
</tbody>
</table>

Bmi1: Ton et al. 2012

<table>
<thead>
<tr>
<th>Bmi1: Ton et al. 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferate and tracing increases</td>
</tr>
</tbody>
</table>

Lrig1: Powell et al. 2012

<table>
<thead>
<tr>
<th>Lrig1: Powell et al. 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proliferate and tracing increases</td>
</tr>
</tbody>
</table>

Intestinal Regeneration- Remarkable Redundance/Adaptability

![Intestinal Regeneration Diagram](Image)

Our Goals

- To devise sorting strategies to isolate ISC from WT mice
- Thus applicable to human tissue

Approaches

- Side population sorting (Dekaney et al. 2005)
- Membrane markers (CD24, von Furstenberg et al. 2012)
Side Population (SP) Sorting

- Originally described to isolate hematopoietic stem cells
 Goodell et al. 1996
- Subsequently applied to stem cells of several tissues
- Relies on ability of stem cells to efflux Hoechst dye – blocked by verapamil
- Intestinal SP enriched in Msi1
 Dekaney et al. 2005
- Comprises 1% total epithelium
- Microarray showed de-enriched for mitosis/cell cycle
 Gulati et al. 2008

<table>
<thead>
<tr>
<th>SP</th>
<th>SP (fold inc)</th>
<th>% Lgr5+ cells</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>17%</td>
<td>17</td>
<td>9</td>
<td>Unchanged</td>
</tr>
<tr>
<td>14%</td>
<td>14</td>
<td>21</td>
<td>Unchanged</td>
</tr>
<tr>
<td>13%</td>
<td>7</td>
<td>9</td>
<td>Unchanged</td>
</tr>
</tbody>
</table>

Conclusion:
- % Lgr5+ cells does not track with crypt fission
- SP represents a different ISC population

Where would active ISCs fit into SP?

- Bone marrow – actively cycling population above traditional SP

<table>
<thead>
<tr>
<th>New intestinal SP subfractions</th>
<th>New intestinal SP subfractions</th>
</tr>
</thead>
<tbody>
<tr>
<td>USP</td>
<td>LSP</td>
</tr>
</tbody>
</table>
Hypothesis: SP analysis will distinguish active vs quiescent intestinal stem cells

Where are the actively cycling cells?

Identification of proliferating cells
• EdU given 1 hr before tissue collection
• Upper and Lower SP collected
• Then analyzed for EdU

Lgr5-EGFPhi cell tracking expt
qRT-PCR of Upper SP

Fold change vs Intact Jejunum

The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent +4 cell markers

Muñoz et al. 2012, EMBO

qRT-PCR of Lower SP

Fold change vs Intact Jejunum

Quantifying EE in SP fractions

Method:
1. Collect USP and LSP by cell sorting
2. Label with synaptophysin antibody (pan-EE marker) - Bjerknes and Cheng (2010)
3. Re-analyze by flow cytometry for synaptophysin positive cells

Upper SP

Lower SP

0.3 ± 0.09% 1.8 ± 0.5%

Synaptophysin-DL640
Conclusions

Upper SP
- EdU data show rapidly dividing cells
- Lgr5-EGFP® almost exclusively tracks to Upper SP
- Further studies needed to assess purity

Lower SP
- EdU shows this is non-cycling in vivo
- Activated *in vitro* and shows ISC behavior
- Enriched in quiescent ISC transcripts
- Absence of active ISC markers and most lineages
- Traces of EE cells (1.8%)

Significance

- Novel, non-reporter based, method applicable to any mouse and readily translatable to human
- Allows for simultaneous isolation or examination of:
 - Active ISCs
 - Quiescent ISCs
- Lower SP is particularly interesting
Significance of Lower SP

- Captures multiple quiescent ISC populations
- Numbers predict rates of crypt fission
- Valuable tool for assessing responses to damage

Acknowledgements

Chris Dekaney
Michael Helmrath
Ajay Gulati
Aaron Garrison
Jeffrey Dehmer
Elizabeth Speck
Richard von Funtenberg
Brian Smith
Kristen Seller
Erica Schenhals

R01 DK59857; U54 DK53547; T32 GM008450; T32 DK007732; P30 DK34987

UNC Core Labs
Flow cytometry - Nancy Fisher
Histology - Kirk McNaughton
Histology - Ashley Ezzel
Histology - Biostatistics