The search for intestinal stem cells: lessons learned

Susan J. Henning PhD

Center for Gastrointestinal Biology and Disease

UNC - Chapel Hill

NASPGHAN State of the Art lecture

October 2013

Outline

- Review historical literature relating to intestinal stem cells (ISCs)
- Explain the challenges facing isolation of ISCs
- Current understanding of ISC populations
- Summarize literature of "which matters"
 - Homeostasis
 - Challenge e.g. after damage
- Present our new data on ISC fractions isolated by side population (SP) sorting

Identification of Lgr5 as a Marker of ISCs

Barker et al. 2007

- Lgr5 initially identified as Wnt target gene
 ISH showed expression restricted to CBC
- Lineage tracing demonstrated:

2009 Successful ISC (Culture			
Ootani et al. • Minced tissue in collagen	Sato et al. • Single Lgr5-EGFP cells			
Air-liquid interface	In Matrigel			
Myofibroblast-dependent	 Added R-spo, Jagged, Noggin, EGF 			
Lactase d35	d1 d5			
d35	d10			
d35 H&E	d13			

Our Goals

- To devise sorting strategies to isolate ISC from WT mice
- Thus applicable to human tissue

Approaches

- Side population sorting (Dekaney et al. 2005)
- Membrane markers (CD24, von Furstenberg et al. 2011)

Side Population (SP) Sorting

- Originally described to isolate Originally describes to hematopoietic stem cells
 Goodell et al. 1996
- •Subsequently applied to stem cells of several tissues
- Relies on ability of stem cells to efflux Hoechst dye blocked by verapamil
- Intestinal SP enriched in Msi1 •Comprises 1% total epithelium
 - Dekaney et al. 2005
- Microarray showed de-enriched for mitosis/cell cycle

Gulati et al. 2008

Relationship between SP and Crypt Fission

	Crypt Fission (%)	Crypt Fission (fold inc)	SP (fold inc)	% Lgr5+ cells	References
Resection	17%	17	9	 Unchanged	Dekaney, et al. (2007) Garrison, et al. (unpub.)
Regeneration- doxorubicin	14%	14	21	Unchanged	Dekaney, et al. (2009)
Development	13%	7	9	Unchanged	Dehmer, et al. (2011)

- % Lgr5⁺ cells does <u>not</u> track with crypt fission
- SP represents a different ISC population

Where would active ISCs fit into SP?

• Bone marrow – actively cycling

SP Subfractions in Matrigel Culture

- Modified Sato conditions
- Growth of actively cycling Upper SP was expected
- Non-cycling Lower SP result was surprising, environment shifts phenotype?
- Enteroids from both SP subfractions express markers of the 4 intestinal lineages

Conclusions

Upper SP

- EdU data show rapidly dividing cells
- Lgr5-EGFPhi almost exclusively tracks to Upper SP
- Further studies needed to assess purity

Lower SP

- EdU shows this is non-cycling in vivo
- Activated in vitro and shows ISC behavior
- Enriched in quiescent ISC transcripts
- Absence of active ISC markers and most lineages
- Traces of EE cells (1.8%)

Significance

- Novel, <u>non-reporter</u> based, method applicable to any mouse and readily translatable to human
- Allows for simultaneous isolation or examination of:
 - Active ISCs
 - Quiescent ISCs
- Lower SP is particularly interesting

Acknowledgements Chris Dekaney Michael Helmrath Ajay Gulati Aaron Garrison Jeffrey Dehmer Elizabeth Speck Richard von Furstenberg Brian Smith Kristen Seiler Erica Schenhals R01 DK69585; U01 DK85547; T32 DK007737; P30 DK34987 UNC Core Labs Flow cytometry - Nancy fisher - Joan Kalnitsky Histology - Kirk McNaughton - Athley Ezzel CGIBD - Histology - Biostalistics